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Bubble dynamics in a compressible liquid. 
Part 1 . First-order theory 

By A. PROSPERETTIt AND A. LEZZIt 
Dipartimento di Fisica, Universita degli Studi, 20133, Milano, Italy 

(Received 9 October 1.985) 

The radial dynamics of a spherical bubble in a compressible liquid is studied by means 
of a simplified singular-perturbation method to first order in the bubble-wall Mach 
number. It is shown that, at this order, a one-parameter family of approximate 
equations for the bubble radius exists, which includes those previously derived by 
Herring and Keller as special cases. The relative merits of these and other equations 
of the family are judged by comparison with numerical results obtained from the 
complete partial-differential-equation formulation by the method of characteristics. 
It is concluded that an equation close to the Keller form, but written in terms of the 
enthalpy of the liquid at the bubble wall, rather than the pressure, is most accurate, 
at  least for the cases considered of collapse in a constant-pressure field and collapse 
driven by a Gaussian pressure pulse. A physical discussion of the magnitude and 
nature of compressibility effects is also given. 

1. Introduction 
In  the present and in a companion paper (Lezzi 6 Prosperetti 1986, hereafter 

referred to as 11), we propose to give a systematic approximate theory of the radial 
motion of a spherical bubble in a compressible liquid in the absence of boundaries. 
This problem, which was first considered in connection with underwater explosions 
(Herring 1941 ; Cole 1948; Trilling 1952; Keller & Kolodner 1956), has recently been 
revived by impressive improvements in ultra-high-speed cinematography and 
holocinematography (Lauterborn & Vogel 1984) which has rendered the detailed 
experimental investigation of cavitation-bubble collapse possible. Furthermore, 
liquid compressibility causes radiation damping, which influences important charac- 
teristics of nonlinear forced oscillatory motion such as period doubling and transition 
to chaos. In view of the recent interest in these questions (Lauterborn & Suchla 1984; 
Lauterborn 1983, 1985) it is desirable to have an equation of motion for the bubble 
boundary as realistic as possible in this as in other respects. 

In  addition to the classic studies already cited, a number of papers have appeared 
in the last few years addressing the same problem (Jahsman 1968; Epstein & Keller 
1971 ; Flynn 1975; Tomita & Shima 1977 ; Lastman & Wentzelll979,1981; Fujikawa 
& Akamatsu 1980; Cramer 1980; Rath 1980; Tilmann 1980; Keller & Miksis 1980). 
Several different approximate equations now exist with no clear relationship to each 
other. The present study was undertaken to clarify the situation by placing the 
treatment of the problem in the framework of a systematic perturbation method. In  
this way we show that entire farniliee of equations exist having the same degree of 
accuracy and therefore entirely equivalent on formal grounds. This situation is 
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reminiscent of that found in the modelling of long surface waves in shallow water 
(see, e.g., Whitham 1974). In  particular we find that the Herring and Keller equations 
are different members of the first-order family of equations. 

The question of which member of each family is ‘best’ cannot be answered in 
absolute terms. We have solved the complete partial differential formulation of the 
problem numerically in some cases to compare the results with the predictions of some 
members of the families of equations. To first order we conclude that an equation 
close to the Keller form is accurate in the cases examined. 

In the present paper we consider the acoustic correction to the incompressible 
Rayleigh-Plesset equation (see, e.g., Plesset & Prosperetti 1977). Use is made of a 
rather heuristic version of the method of matched asymptotic expansions in which 
the small parameter is the bubble-wall Mach number. In I1 we carry the analysis one 
step further to second order, and use a more rigorous version of the perturbation 
method. The motivation is not only the desire to put the results of the present paper 
on a sounder basis, but the difficulty into which the heuristic perturbation procedure 
runs at the next step. The subdivision of material between the two papers also enables 
us to render the present one more readable and physically intelligible. To enhance 
these features we include in 93 a qualitative discussion of our approach and results. 

The extreme violence of bubble motion in some cases is well known and equations 
valid to first order in the Mach number cannot be expected to have general validity. 
However, a bubble collapsing with a radial velocity comparable with the speed of 
sound of the liquid or greater in most cases will shatter at the end of the collapse 
so that the rebound phase of the motion, where the liquid compressibility is most 
prominent, will be absent. Our results can therefore be useful in practically all 
situations in which the bubble maintains its integrity without significant distortion 
of the spherical shape. In  addition, as shown in 11, the present first-order correction 
to the incompressible results captures to a large extent the effect of compressibility, 
with the next term having only a minor influence. 

2. Mathematical formulation 

by the equation of continuity 
With the assumption of spherical symmetry the motion of the liquid is governed 

and momentum 

aP -+V*(pu) at = 0, 

au au 1 ap 
-+u-+--=o, 
at ar p ar 

where u = u3is the velocity field entirely directed in the radial direction and the other 
symbols have their customary meaning. In bubble dynamics, high-speed motions 
such that liquid compressibility is important usually occur only when thermal effects 
in the liquid are unimportant (Plesset & Prosperetti 1977). Therefore the liquid state 
is completely defined by a single thermodynamic variable, which permits the 
introduction of a speed of sound c and enthalpy h through the definitions 

Here the reference pressure p ,  is chosen as the pressure in the undisturbed liquid. 
Furthermore, since a purely radial motion is evidently irrotational, we may introduce 
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a velocity potential p such that u = acp/ar. With these definitions (2.1) may be 
rewritten as 

while (2.2) may be integrated once to give 

2 + $ 2 + h  at = 0. (2.5) 

In obtaining this equation the fluid at infinity has been assumed to be undisturbed 
and the time derivative of Q, has been taken to vanish there. 

To complete the mathematical formulation we need the kinematic boundary 
condition at the bubble wall r = R(t), 

dR 
dt 

U ( T  = R(t), t) = -, 

and the condition on the normal stresses, which is 

HerepB(t) = p(R(t), t) is the pressure on the liquid side of the interface, CT is the surface 
tension, and p is the liquid viscosity. The internal pressure pi should in general be 
determined from a consideration of the conservation equations inside the bubble. The 
assumption that the liquid remains isothermal effectively uncouples the internal and 
the external problems, and for the time being pi can be regarded as given. 

In  (2.7) we retain the liquid viscosity although it has been dropped in (2.2). The 
justification is that in the momentum equation viscous effects only enter through their 
coupling with the compressibility of the liquid and therefore are ordinarily small. 
They have been included by Keller & Miksis (1980). In (2.6) some small terms due 
to mass exchange at the interface have been neglected. These effects, which are quite 
small, have been considered by Fujikawa & Akamatsu (1980) for the case of free 
motion of the bubble. 

In  the following, explicit expressions for c and h will be needed. To this end we 
make use of an equation of state of the modified Tait form 

The values B = 3049.13 bars, n = 7.15 given an excellent fit to .the experimental 
pressure-density relation for water up to lo5 bars (Fujikawa & Akamatsu 1980) and 
are used in the numerical examples of this paper and of 11. With (2.8) we readily find 
the following relations : 

2 (2.9) c2 = n@+B) 
P 

(2.10) 

where c& = n(p, + B ) / p ,  is the undisturbed speed of sound, squared, in the liquid. ' 
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3. Preliminary considerations 
We propose to give now a heuristic discussion of the key features of the present 

problem which will serve to clarify the following developments and naturally lead 
to the singular perturbation methods applied here and in 11. 

When the pressure in the liquid does not deviate too strongly from p, we may write, 
using the definition (2.3) of c, 

and, similarly, 

h = (p--+ 1 P’-P, ...) dp‘ 
p ,  m P w C m  

PCO 

where ( B / A )  = 2p, c,(dc/dp), is the standard nonlinearity parameter of acoustics. 
Upon substitution into (2.4) one finds 

As c, -+ 00 the standard incompressible formulation is recovered, namely 

(3.5a, b )  

This formulation differs from the exact one (3.3), (3.4) because it disregards two 
physical effects, the finite speed of propagation of pressure waves, and the compression 
energy stored in the liquid through a change of its specific volume (second and higher 
terms in (3.1)). It may be expected that both effects will be unimportant near the 
bubble, the first one because propagation times are much shorter than the timescale 
T for the motion of the boundary, the second one because the kinetic energy and the 
‘pressure energy’ (first term in (3.1)) are large in this region. Hence the incompressible 
formulation (3.5) is expected to be accurate near the bubble. Far from the bubble, 
on the other hand, the finite speed of propagation is essential. However, the amplitude 
of the motion caused by the bubble is much attenuated so that (3.3) and (3.4) can 
be linearized with a negligible error, 

(3.6a, b )  

This is the standard acoustic formulation from which the wave equation for the 
potential 

(3.7) 

immediately follows. It is clear that, in this context, ‘far from the bubble’ means 
at distances r of the order 

r x cmT,  (3.8) 
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while 'near the bubble' means at  distances of the order 

r x R,, (3.9) 

where R, is of the order of the bubble radius. In practical applications the ratio of 
the two scales, 

e=- RO (3.10) 

is a small parameter so that the near and the far field are well separated and the 
problem may be viewed as a singular perturbation one. 

Keller (Keller & Kolodner 1956; Epstein & Keller 1972; Keller & Miksis 1980) used 
a formulation consisting of the wave equation (3.7) and the incompressible Bernoulli 
integral (3.5b) to derive an approximate equation of motion for the bubble radius. 
The reasons for the success of this procedure are evident from the above considerations. 
The wave equation is accurate in the far field, while in the near field it differs from 
Laplace's equation ( 3 . 5 ~ ~ )  by an unimportant term. Similarly, the Bernoulli integral 
(3.5b) is accurate in the near field and differs from the appropriate far-field relation 
(3.6b) by the term !jd which is small in that region. On the basis of this approximate 
formulation Keller and co-workers obtained the following approximate equation : 

c,T' ' 

(1 - cil  $) R %+: (1  -@;l z) dR (z) dR 

where pv(t) denotes the variable part of the pressure in the liquid at the location of 
the bubble centre in the absence of the bubble. It will be shown in the following that 
this equation is correct to first order in the Mach number of the bubble-wall motion, 
i.e. that the error term has the order (c-,' dR/dt)2. For c, -+ 00 (3.1 1) reduces to the 
well-known Rayleigh-Plesset equation of incompressible bubble dynamics 

d2R 3 dR 1 
R-+-( dt2 2 dt ) =- p, [PB(~) -P~-P , (~ )~ ,  (3.12) 

which therefore has an error of order (c-,' dR/dt). The estimates given of the error 
terms show that if, for example, (3.12) is multiplied by (ci1 dR/dt) and subtracted 
from (3.11) the result will have the same degree of accuracy as (3.11). The equation 
found by this procedure is 

1 
c, dt 

and was originally derived by Herring (1941) ; see also Trilling (1952). Clearly a whole 
one-parameter family of equations can be obtained in this way combining (3.1 1)  and 
(3.12). From the mathematical viewpoint, which member of the family has the least 
error is of course a meaningless question because all of them can legitimately be 
applied only when (c-,' dR/dt)2 is negligibly small. However, the question has a 
considerable practical importance because one would like to have an equation 
sufficiently robust to be approximately applicable even outside its strict domain of 
validity. Unfortunately, it  does not appear possible to settle this matter other than 
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by comparison of the equations with numerical solutions of the original partial 
differential formulation. This will be attempted later in the paper, although the 
consideration of only a few specific cases can only give limited answers. As will be 
shown in 11, the same ambiguity arises a t  the next step in the perturbation solution 
of the problem, where a two-parameter family of equations is found. 

An equation similar to  (3.11) was proposed by Gilmore (1952) on the basis of the 
Kirkwood-Bethe approximation (1942 ; see also Cole 1948), and is 

(3.14) 
dR R d H  = ( l + C - l g )  H + ( l - C -  1- ) -- 
dt C dt * 

Here Cand H denote the values of the speed of sound and of the enthalpy a t  the bubble 
surface, computed from the exact relations (2.3). Since in (3.1 I )  one can approximately 
set p,(t+R/c,) x p,(t)+(R/c,) dpv/dt i t  is clear that  (3.14) reduces to (3.11) if 
C x c, H x (p,-p, -p,)/p, ,  and the term in CP2 is dropped. As i t  stands, (3.14) 
contains some second-order terms, although it is known (Jahsman 1968), and will be 
confirmed in 11, that i t  is not accurate to second order. Nevertheless, according to 
some results of Hickling & Plesset (1964) and to our own preliminary calculations, 
it is found that (3.14) possesses a remarkable accuracy. Investigating the causes of 
this success we have realized that i t  is due to the use of the enthalpy directly, rather 
than the expansion (3.1). If, on the basis of (3.5b), one estimates (p-p,)/p, to be 
of order u2, the second term in this expansion appears to be of order Mach number 
squared, and therefore should be small. However, near the point of minimum radius, 
the correct order of (p-p,)/p, is not set by the velocity squared, but rather by the 
first term of (3.5b), +/at. This term is very large and use of h avoids this source of 
error. This problem can be considered from the point of view of the scaling of the 
equations, as will be done in 11. For this reason we shall retain the enthalpy in the 
following developments. 

4. Non-dimensional formulation 

we introduce non-dimensional quantities, indicated by asterisks, as follows 
Let R, and U denote typical scales for the bubble radius and radial velocity. Then 

h = U2h,, c = C, c,, p = p,+p, Vp,. J 
At first sight this particular scaling is straightforward, although it  conceals some 
subtle points which will be discussed in 11. In  terms of these variables, (2.4) and (2.5) 
become 

where 
U 

c, 
e = -  (4.3) 

is of the order of the bubble wall Mach number. Since the timescale is T = R,/U, a$ 
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is clear from (4.1), this definition of E coincides with the one previously given in (3.10). 
From (2.10) the enthalpy becomes 

1 C z , - l  h, =-- 
s2 n - 1 '  

from which C: = 1 +e2(%- 1)  h,. 

The kinematic boundary condition (2.6) is 

@ - -- dR* at r,  = R,, 
ar, dt, 

while the dynamic one may be written 

h, = h,, at r ,  = R,, 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

where ---[(-) p , + B  (n- l ) ln  - 1 1 ,  1 1 
hB* -eZn-1 p , + ~  - -  

with p ,  given by (2.7). 
The variable r ,  defined in (4.1) is the appropriate coordinate in the near field. As 

discussed in the previous section, the appropriate coordinate in the far field is, instead, 
r /c ,  T or 

(4.8) 
* r  r = 3, 

8 

In terms of r" (4.2) are 

Solutions of (4.2) and (4.9) are now sought in the form of power series in E .  The 
boundary conditions at infinity are imposed on the solutions of (4.9), while those a t  
the bubble wall are imposed on the solution of (4.2). The remaining undetermined 
quantities can then be found by matching in the standard way (see, e.g., Van Dyke 
1975). 

5. Perturbation solution 
For the inner equations (4.2), we let 

to find, at zero order, 

Vz,% = 0, 

Vz,p1 = 0, 

and at first order, 

-+--+h,  a(& avo av1 = 0. 
at, ar, ar, 

(5.2a, b )  

(5 .3a,  b) 

For the outer equations (4.9), we let 

p, = q5, + eq5, + . . . , h, = H ,  + eHl + . . . . (5.4) 

It follows from (4.5) that, up to order E ,  c, in ( 4 . 9 ~ )  can be taken as 1. Hence we find 
at zero order 

(5.5a, b )  
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aH a41 
at* at* 

Vz$l +--J = 0, -+ H ,  = 0. 

The relevant solution of (5 .2)  has the form 

fo(t*) f; 1 f; cpo =--+Sop*), h, = - -g ; - - -  
r* r* 2 r i  ’ 

(5.6a, b )  

(5.7~4 b)  

where here and in the following the prime indicates differentiation with respect to 
the argument. Imposing the kinematic boundary condition (4.6) one finds 

fo = R: R i .  (5.8) 

The solution of (5.5) such that both Ho and aq5,/at, vanish a t  infinity is 

#o = r l [ F O ( t *  - ?) + GJt ,  + Y)] + a0, (5.94 

Ho = - r ’ [ F ; ( t ,  -?) +G;(t ,  +?)I, (5.9b) 

where a. is a constant. For Fsmall, i.e. at the outer edge of the inner domain, ( 5 . 9 ~ )  is 
asymptotic to 

(5.10) 

while for r+ large, which is the inner boundary of the outer domain, ( 5 . 7 ~ )  reduces to 

Po go@*). (5.11) 

The two solutions agree (i.e. match) in this domain where they are both valid provided 

(5.12) 
that 

so that the final solution for the potential is 

Fo(t*) = -Go(t*), go(t*) = 2G;@,(t,)+ao, 

(5 .13~)  

#o = T“-’[Go(t*+?)-Go(t*-?)]+ao, (5.13b) 

Po = -fo(t*) -+2G;(t*)+a0,  
r* 

and for the enthalpy ( 5 . 1 4 ~ )  

Ho = rL1[Gi(t*+?)-G;(t*-?)].  (5.14b) 

The interpretation of these results is straightforward. To the present lowest order 
the outer fields are not affected by the presence of the bubble and the incident wave 
Go(t, + Y) is reflected unaltered. In  the inner field the superposition of the incident 
and reflected waves adds, to the perturbation caused by the bubble, a time-varying, 
spatially uniform component. In this sense the bubble ‘sees’ a uniform field a t  its 
‘infinity ’. 

The solution of the inner first-order equation ( 5 . 3 ~ )  for % is formally the same as 
(5.7a), but now the kinematic boundary condition requires fl(t*) = 0, so that 

% = g,(t*),  hl = - d ( t * ) .  (5.15a, b)  

The solution of the corresponding outer equations (5.6) is also formally identical to 
the zero-order one (5.9). However, we interpret the terms in E as the correction to 
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the situation represented by (5.13 b) ,  (5.14b) introduced by the presence of the bubble. 
Hence $1, H I  cannot contain incoming, but only outgoing waves, and therefore we 
write 

$, = V F 1 ( t *  -q, H ,  = -Tc'F;(t* -?). (5.16a, b)  

Since the combination of zero- and first-order terms approximates the exact 
solution with an error of order s2, the correct matching prescription is now 

lim E - ' ( Q ) ~ + E P ) ~ )  = lim E - ~ ( $ ~ + E $ ~ ) ,  
r.+m i + O  

(5.17) 

rather than the one previously used. Applying this condition one finds 

F l u * )  = -fo(t*), 91(t*) = -mt*) =fO?*), (5.18) 

so that P)1 =f;(t*), $1 = -V-ov*--g. (5.19a, b)  

The enthalpy fields also satisfy (5.17) provided (5.18) hold. Combining ( 5 . 1 4 ~ )  and 
(5.15b) we find the following approximation to the liquid enthalpy valid near the 

f' I f "  (5.20) 
bubble : 

where all the functions in the right-hand side have argument t ,  and fo is given by 
(5.8). With the results ( 5 . 1 4 ~ )  and (5.20) we can now derive approximate equations 
of motion for the bubble radius. 

h - " - - L - ~ G ~ - c & + O ( ~ ~ ) ,  * - r* 2 r4, 

6. The equations of motion for the bubble radius 
We shall now derive and comment on the equations of motion for the bubble radius 

valid to zeroth and first order in E. In  the first case we impose the dynamic boundary 
condition (4.7) on ( 5 . 1 4 ~ )  to obtain 

or, using (5.8) to eliminate fo, 

R, R'; +:R: = hg* + 2G:. 

In dimensional variables this equation is 

To the present order of approximation, h, N (13B-pm)/Pm. With this, i t  is seen that 
(6.3) is identical to the Rayleigh-Plesset equation (3.12), provided that 

It will be seen below that the use of h is preferable to that of the expansion (3.1) 
because i t  permits a better estimate of the energy radiated by the bubble. Equation 
(6.3) evidently completely fails to account for this phenomenon and therefore the use 
of h here is unwarranted since this equation can only be legitimately used when 
radiation losses are negligible anyway. From the point of view of the present 
perturbation solution the Rayleigh-Plesset equation is seen to have an error of order 
E, i.e. of the order of the Mach number of the bubble-wall motion. 
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A t  the next order we use (5.20) to obtain 

Iff," is computed using (5.8), third-order derivatives of the radius appear, a problem 
which is well known in the classical theory of the electron (Jackson 1975; Rohrlich 
1965; Burke 1970). This difficulty can be circumvented if it is realized that fo, being 
multiplied by E ,  can be evaluated from (6.1) maintaining an overall error of order 
e2 in (6.5). In this way we find 

f," = !j(R2+2R, R; R ; ) + R ; ( h B + 2 G , " ) + R , ( h ~ + 2 G ~ ) + O ( s ) ,  (6.6) 

and, upon substitution into (6.5), 

d 
dt 

(1 -sR;) R, R;+$(l -%R;) R;" = (1 +ER;)  (h,* +2G,") +sR - (hB, +2G,"). 
(6.7) 

In  dimensional variables this equation is, using (6.4), 

(1 -cgl g) R %+: (1 -+il ;it> dR (;it) dR 

In the expansion (3.1), the first correction to the approximation h = ( p - p , ) / p ,  is 
of order s2, and therefore this approximation could, formally, be used in (6.8), thus 
recovering the Keller equation (3.11) to the extent that p,(t+R/c,) x p,( t )+ 
(R/c,) dp,/dt. It will be shown below, however, that the form (6.8) with the enthalpy 
is slightly superior to the Keller form (3.1 1). 

If, instead of proceeding as in (6.6), we had used (5.8) to compute f," and then used 
the Rayleigh-Plesset equation (6.2) to evaluate R i ,  an equation of the Herring form 
(3.13) would have been found in place of (6.8). Thus, as had been anticipated, the 
two equations are exactly equivalent to order s. More generally, if one writes 

= hA+(l  - h ) A  and uses (6.1) to evaluate the first term and (6.2) to express the 
third derivative of the radius which appears on expanding the second term, one finds 

The same result can be obtained by multiplying (6.3) by (Ale,) dR/dt and subtracting 
the result from (6.8). The arbitrary parameter h must, of course, be of smaller order 
than l/s so as not to destroy the order of accuracy of the approximate equation. 

We propose to refer to (6.9) as the general Keller-Herring equation. Any member 
of this one-parameter family of equations is a priori an acceptable form of the radial 
equation of motion correct to first order in the Mach number. Criteria for the selection 
of an optimal value of h do not appear to be available and, as is made clear in 11, 
even the consideration of the next equation, valid to order (Mach number)2, gives no 
indication on this point. We examine the matter numerically in the next section. 

In  closing we offer, in the light of (6.9), some comments on the equations proposed 
in the literature. In the first place, the form obtained by replacing h, with 
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( p B - p , ) / p ,  is, as already stated, formally entirely equivalent to (6.9) (in the sense 
that both have error terms of order (Mach number)2), and hence this is not an essential 
difference. With the exception of the work of Tomita & Shima (1977), the related one 
of Fujikawa & Akamatsu (1980), and the results of 11, no equation accurate to order 
(Mach number)2 exists. Therefore all equations in which terms multiplied by c~~ 
appear are not correct to second order, and will be considered here only in their 
truncated form obtained by dropping such terms. In this sense the equation of Flynn 
(1975) reduces to the Keller form (A = 0) and that of Rath (1980) to the Herring form 
(i.e. A = 1). The equation of Gilmore (1952) (3.14) has already been considered in $3 
and the same considerations apply to Cramer’s (1980) adaptation of it to the case 
of forced motion. Tilmann (1980) has also derived an equation which, aside from terms 
in c;~, is identical with (6.8) including the use of the enthalpy rather than the pressure. 
No justification of this procedure is, however, given. 

7. Numerical computations 
The preceding analysis has led to a one-parameter family of equations all members 

of which are a priori legitimate approximations to the description of the radial 
dynamics of a bubble in a compressible liquid. No criteria seem to be available for 
the selection of any particular equation of the family and it has therefore been decided 
to examine the question by comparing with a few numerical simulations of the 
collapse process obtained by solving the original partial differential formulation of 
$2. The reason for choosing this particular process is that near the end of the collapse 
the pressure changes are greatest and the effect of compressibility most pronounced. 

It is clear that the results derived from this comparison cannot be fully satisfactory, 
if only because they are necessarily limited to a few specific cases. Nevertheless, 
certain trends seem to emerge from the comparison which indicate that an equation 
close to the Keller form is slightly superior to others. Here we discuss the results. 
The numerical method is a standard version of the method of characteristics and is 
briefly described in the Appendix. Being based on the characteristics it fails when 
a shock wave forms in the liquid and accordingly the computation must be stopped 
shortly after the first point of minimum radius is reached and the cavity begins to 
rebound. 

When the bubble starts from rest, a major portion of the time before the minimum 
radius is reached is spent in a state of very slow motion during which the velocity 
very gradually builds up. These conditions are such that the perturbation results are 
quite accurate to describe them. To save computer time we have, therefore started 
the numerical simulation at a time 2* < 0 using as initial conditions for the fields the 
analytic expressions to be given in full in 11. In typical cases the values of the radius 
and radial velocity at the starting time 2* were of the order of 0.5 and -10 
respectively. We have examined the error introduced by the use of the approximate 
analytic expressions in a few cases by starting the numerical calculation earlier or 
later and we have found negligible differences in the results. 

We consider free oscillations, in which the bubble is released at the initial instant 
t ,  = 0 with a radius greater than the equilibrium value and the ambient pressure 
stays constant, and forced oscillations in which the bubble, initially in equilibrium, 
is excited by an incoming pressure pulse. 

To close the mathematical formulation i t  is necessary to specify the law of variation 
of the internal pressure pi appearing in (2.7). The assumption that the liquid remains 
isotherm81 effectively uncouples the internal problem from the external one and this 
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FIGURE 1 .  Dimensionless maximum velocity attained during the first rebound versus the dimen- 
sionless minimum radius at the end of the preceding collapse, which is completed at a dimensionless 
time close to 3.68. The filled triangles are the results obtained from (6.9), the open triangles are 
the corresponding results obtained from the same equation written in terms of the pressure rather 
than the enthalpy, i.e with (p,-p,)/p, in place of h,. The symbol marked G is the result given 
by the Gilmore equation (3.14). The values of the parameter A appearing in the equation are, from 
left to right, 1 (Herring form), 0.75, 0.5, 0.25, 0 (Keller form). The crosses are the results given by 
the numerical calculation with the method of characteristics starting from t ,  = 3.6653, 
R, = 0.5522, R; =- 14.26 and using a spatial grid with 400 nodes (point 1 )  and from t, = 3.6250, 
R, = 0.9322, R; =-6.863 with 250 nodes (point 2). In both cases /? = 4, Ax = 0.005. Initial radius 
R,(O) = 4. 

quantity could in principle be computed by solving the conservation equations in the 
bubble (see, e.g., Prosperetti, Crum & Commander 1986). For the present purposes 
of comparison, however, a simpler procedure is adequate and we assume an adiabatic 
Dressure-volume relation. 

where R, is the equilibrium radius, pi ,  the corresponding internal pressure, and y the 
ratio of the specific heats. The equilibrium radius is given by (see, e.g., Plesset & 
Prosperetti 1977) 

(7.2) 

This quantity is used as the unit of length in the presentation of the results. The unit 
of velocity is taken as 

u = k)i. (7.3) 

Furthermore we take B = 3049.13 bars, n = 7.15 in the equation of state of the 
liquid, (2.8). The other pertinent numerical values are y = 1.4, p ,  = 1 bar, 
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FI'I~URE 2. Minimum dimensionless negative velocity (maximum in absolute value) reached by the 
bubble wall during the first collapse versus the dimensionless minimum radius at the end of the 
collapse. The triangles correspond, in ascending order, to A = 1 (Herring), 0.75,0.5,0.25,0 (Keller). 
Other symbols as in figure 1. 

pa = 0.998 g/cm9, p = 0.01 poise, u = 72.5 erg/cma, R, = 0.01 cm. It may be noted 
that, when R, is not too small, as in the present case, the mathematical formulation 
can be shown to be approximately independent of this quantity after a suitable 
scaling. 

In  the collapse the most critical sequence of events takes place near the point of 
minimum radius. It is here that the internal pressure reaches very high values and 
the elastic energy, which will subsequently be radiated away to infinity, is stored in 
the liquid. To get a clearer picture of the differences among the equations, rather than 
showing portions of the R,(t,) curves in this region, which are all very close together, 
we have chosen to single out three critical quantities and to show their variation with 
the parameter A appearing in the generalized Keller-Herring equation (6.9). The .first 
one is the minimum velocity (maximum in absolute value) reached during the 
collapse, the second one is the minimum radius, and the third one is the maximum 
velocity during the first rebound, which is reached very shortly after the point of 
minimum radius. The last quantity, in particular, gives a very clear indication of the 
radiation losses from the bubble. 

Figures 1-3 refer to the case of free oscillations for an initial radius equal to 4 times 
the equilibrium value. Figure 1 shows the maximum velocity reached during the first 
rebound plotted as a function of the minimum radius for different values of A. The 
two crosses are the results obtained with the method of characteristics for two 
different starting times t,of the integration. In  one case the initial values of the radius 
and radial velocity were 0.5522 and -14.26, respectively, and in the second case 
0.9322 and -6.863. We include both results to given an idea of the range of variation 
with the initial conditions. The open triangles are the prediction of the generalized 
Keller-Herring equation in terms of the pressure while the full triangles are the 
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predictions in terms of the enthalpy. In  both cases the far-right points correspond 
to h = 0 (i.e. the Keller form), and the far-left ones to h = 1 (i.e. the Herring form). 
The intermediate points are for A = 0.25, 0.5, 0.75 in this order from right to left. 
The last symbol marked G is the prediction of the Gilmore equation (3.14). Figure 
2 is a plot of the minimum velocity versus the minimum radius. Since this velocity 
is negative, this is actually in absolute value the largest velocity attained during the 
whole process. In  the units used here the speed of sound is c, /U = 147.67, and 
therefore it is seen that the maximum Mach number reached is of the order of 0.3. 
Here the uppermost points are for h = 0 and the bottom ones for h = 1. Finally, figure 
3 is a cross-plot of the preceding two figures showing the maximum versus the 
minimum velocity. 

In  spite of the not too large value of the Mach number, the case to which the figures 
refer is already rather extreme because the maximum pressure reached in the bubble 
is of the order of 7000 bars. For this reason the equations in terms of the enthalpy 
are seen to perform globally better than those in terms of the pressure, as had been 
anticipated (see especially figures 1 and 3). Clearly, in these conditions the series 
expansion (3.1) is a very poor approximation to the correct pressure-enthalpy 
relation. The large value of the pressure in spite of a relatively small Mach number 
is an illustration of the point already made about the relative importance of the terms 
%/at and !pz of the Bernoulli equation (2.5) in these circumstances. 

For all the quantities plotted in figures 1-3 the Keller form of the equation is seen 
to be superior to the Herring one. Furthermore, there does not seem to be anything 
to gain by using values of h outside the interval G1. This has been confirmed by some 
trial calculations conducted with h in the range 0 to -2. The Gilmore equation is 
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FIGURE 4. Same aa figure 1 but for R,(O) = 3. The filled triangles ((6.9) in terms of the enthalpy) 
are, from left to right, for A = .0.75,0.5,0.25,0 (Keller). The open ones ((6.9) in terms of the pressure) 
are, in the same order, for A = 1 (Herring), 0.75, 0.5,0.25,0 (Keller). The cross is the result of the 
method of characteristics applied with 200 nodes, B = 4, Ax = 0.005, starting from R, = 0.8458, 
R; =-5.016. 
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FIGURE 5. Same as figure 2 but for R,(O) = 3. The points, in ascending order, are for the values 
of A as in figure 4. 
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FIGURE 6. Portion of the dimensionless radius-versus-time curve near the maximum attained during 
the first rebound for an initial value of the radius R,(O) = 4. The lowest curve is the result of (6.9) 
with h = 1 (Herring form) in terms of the enthalpy. The upper line is for h = 0 (Keller form) in 
terms of the enthalpy. The middle line is for A = 0 with the equation written in terms of the pressure. 

in excellent agreement with the numerical results in figure 2, but is seen to be clearly 
inferior to the Keller equation in figures 1 and 3. 

Figures 4 and 5 are analogous to 1 and 2 for an initial radius equal to 3 times the 
equilibrium value. In this case the maximum Mach number is about 0.13 and the 
maximum internal pressure 1700 bars. Hence one expects a smaller difference 
between the equations in terms of the enthalpy and of the pressure, which is confirmed 
by the results. Otherwise the Keller form is found also in this case to be superior to 
the Herring one. 

In  figure 6 we show a portion of the radius-time curve predicted by the 
approximate differential equations near the maximum after the first collapse. The 
height of this maximum is sensitive to the amount of acoustic energy lost by radiation 
and hence we can see that the Herring form ( A  = 1 ,  equation in terms of the pressure, 
lowest curve) tends to give a stronger radiation loss than the Keller form ( A  = 0, upper 
two curves ; the dotted one in terms of the pressure and the continuous one in terms 
of the enthalpy). It will be seen in I1 that the second-order equations predict slightly 
higher radii. The energy lost by radiation is thus seen to be overpredicted by the 
first-order equations, especially if the pressure is used in place of the enthalpy. It may 
be noted that the maximum radius predicted by the incompressible Rayleigh-Plesset 
equation for this case is essentially the same as the initial one, i.e. R, = 4, while that 
in figure 6 is about 2.55. Since the energy of the system can be taken to be proportional 
to R& to a first approximation, it is seen that, in this case, approximately 74% of 
the initial energy is lost by radiation during the first compression and expansion cycle. 
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FIGURE 7. Same as figure 1 for the forced case in which the incident wave has the form given by 
(7.5) and the bubble radius initially has the equilibrium value R,(O) = 1. The cross is the result 
obtained with the method of characteristics starting from R ,  = 0.99999, R; =-0.417 x with 
250 nodes, 1 = 4, Ax = 0.005. 

To analyse a case of forced oscillations we have considered a Gaussian pulse as seen 
in the inner field, i.e. 

2G,"(t,) = A exp 7 

where A, r ,  to are constants. Upon integration one has 

(7.4) 

It was found on trial runs that, if r is large, the bubble is compressed quasi-statically, 
which is a situation of little interest here. For moderate values of r (around 1) the 
compression is non-monotonic. Since the rebound phase cannot be followed with our 
numerical method, this situation is also not suitable to carry out a comparison 
between numerical and perturbation results. Upon further reduction of the value of 
r the behaviour becomes closer to a strong monotonic compression, followed by a 
rebound and damped oscillations. For this reason we have taken 7 = 0.01. In order 
to achieve a sufficiently violent compression we have also taken A = -3300. The 
parameter to has been chosen so that at the initial instant the pressure in the vicinity 
of the bubble differs negligibly from the undisturbed pressure. The value to = 0.447 66 
has been used in this example. 

We show in figures 7-9 the same type of information as in figures 1-3 for this case 
of forced oscillations. As before the filled symbols indicate results obtained with the 
equations in terms of the enthalpy and the open ones in terms of the pressure. The 
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FIGWE 9. Maximum dimensionless velocity versus minimum dimensionlesa velocity for the 
forced case of figure I. 
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general appearance of these figures is quite similar to the preceding ones and the same 
conclusions apply. 

Further comparisons, including the second-order equations, will be found in 11. 

The present study has been supported in part by the Courant Institute of 
Mathematics, New York University, through the grant ONR N00014-81-K-0002. 

Appendix. Numerical method 
In  the numerical solution of the present problem there are two basic difficulties. 

In  the fist place, the position of the boundary varies with time. Secondly, the spatial 
scale to be resolved gets progressively smaller as the collapse proceeds. Thus, if a fixed 
grid is adopted, an excessively large number of points is required. To avoid both 
problems we introduce a new spatial variable according to 

x = [&IllP. 

for 1 < p this transformation has the further advantage that, in terms of the original 
variable r,  nodes progressively further apart from each other correspond to an 
equispaced grid in x .  

In  terms of x,  (2.1) and (2.2) become, in characteristic form, 

du d P  2cu -+-+- = 0 ,  
dt - dt -RxP 

along the characteristic lines C, defined by 

u 
- = R-'(u-dR'+c).  
dt 

The quantity P is defined by 

and, with (2.8), has the explicit expression 

P = - [ - J [ ( - )  2n p , + B  p + B  (n-l)lzn -11. 
n-1 np, p , + B  

We illustrate the numerical method with reference to figure 10. Suppose the 
solution is known up to time tn. To determine it at time tn+l we use the trapezoidal 
rule and write 

u?+' - U* + ?+'- P(A,) &iAt[NT+' + H(A, ) ]  = 0, 

4- (z,)B-~At[&(f)(A)+&(f)(A*)] = 0, 

Q' f ' = R-'( u - dR' & c). 

(A 6) 

(A 7 )  

where subscripts and superscripts denote spatial and temporal locations and 

(A 8) 

The points A, are the intersections of the C, characteristics with the line t = tn and 
are given by (A 7). The values of u andp at x ,  are obtained by quadratic interpolation 

16 F L P  168 
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FIQURE 11. Modification of the boundaries of the computational domain : the left boundary. 

using the known values at xj, xjkl. The four equations (A 6), (A 7) are a closed system 
in the four unknowns x+, u;+l, Pjt+l, the solution of which is readily obtained by 
an iterative procedure s;ch as the Newton-Raphson method. 

This basic approach must be suitably modified at the boundaries of the computa- 
tional domain. For the left boundary, xo = 1, we can only use the information 
propagating along the C- characteristic (figure l l ) ,  but we also know from the 
kinematic boundary condition that u(x = 1, tn+l) = (R')n+l and, from the dynamic 
one. that 

3Y 2a+4,~(R')~+l 
p(x = 1, tn+l )  = Pi"+) - Rn+l 

Furthermore, again using the trapezoidal rule, 

Using this relation the two C- equations (A 6), (A 7 )  and (A 9) can be converted into 
a nonlinear system for the three unknowns x-, (R')n+l, p ( z  = 1, tn+l) which is again 
solved iteratively. The value of p-  is obtained by quadratic interpolation using the 
points zo, xl, xz. 

A t  the right boundary x = xN, which is the 'infinity' of the computational domain, 
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use can be made only of the C+ characteristics. To obtain a closed system we add 
the Euler equation in linearized form 

_ -  au aP 
at - -Pco ~7 

which, discretized and written in terms of x ,  becsmes 

[(R')n+'(uz+1-Uz~~)-x;;Bp,1(23z+1--pz~~)] G - P x N  At -1 Rn+i ( Un+i N -un N )  = 0. 

In the numerical procedure the values uzt;, p z . ;  are computed before the last node 
is considered and hence this equation effectively contains the only unknowns uz+l, 
p$+l. The C+ relation (A 6) introduces the further unknown x+, and the C ,  relation 
(A 7) closes the system, which is also solved iteratively. The values of u+, p+ are 
obtained by quadratic interpolation using x N ,  x ~ - ~ ,  xN+. 

The integration has been performed with a variable time step chosen according to 
the rule 

For the Courant number C the value t has been used in most of the calculations. For 
the other parameters, typical values used are P = 4, N = 200-400, Ax = 5 x The 
computer program has been successfully tested by applying it to the collapse of a 
one-dimensional bubble for which an analytic solution is available (Biasi, Prosperetti 
& Tozzi 1972). 
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